Mixed-mode toughness of human cortical bone containing a longitudinal crack in far-field compression.
نویسندگان
چکیده
Bone is generally loaded under multiaxial conditions in vivo; as it invariably contains microcracks, this leads to complex mixed-mode stress-states involving combinations of tension, compression and shear. In previous work on the mixed-mode loading of human cortical bone (using an asymmetric bend test geometry), we found that the bone toughness was lower when loaded in far-field shear than in tension (opposite to the trend in most brittle materials), although only for the transverse orientation. This is a consequence of the competition between preferred mechanical vs. microstructural crack-path directions, the former dictated by the direction of the maximum mechanical "driving force" (which changes with the mode-mixity), and the latter by the "weakest" microstructural path (which in human bone is along the osteonal interfaces or cement lines). As most microcracks are oriented longitudinally, we investigate here the corresponding mixed-mode toughness of human cortical bone in the longitudinal (proximal-distal) orientation using a "double cleavage drilled compression" test geometry, which provides a physiologically-relevant loading condition for bone in that it characterizes the toughness of a longitudinal crack loaded in far-field compression. In contrast to the transverse toughness, results show that the longitudinal toughness, measured using the strain-energy release rate, is significantly higher in shear (mode II) than in tension (mode I). This is consistent, however, with the individual criteria of preferred mechanical vs. microstructural crack paths being commensurate in this orientation.
منابع مشابه
The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone.
The majority of fracture mechanics studies on the toughness of bone have been performed under tensile loading. However, it has recently been shown that the toughness of human cortical bone in the transverse (breaking) orientation is actually much lower in shear (mode II) than in tension (mode I); a fact that is physiologically relevant as in vivo bone is invariably loaded multiaxially. Since bo...
متن کاملThe true toughness of human cortical bone measured with realistically short cracks.
Bone is more difficult to break than to split. Although this is well known, and many studies exist on the behaviour of long cracks in bone, there is a need for data on the orientation-dependent crack-growth resistance behaviour of human cortical bone that accurately assesses its toughness at appropriate size scales. Here, we use in situ mechanical testing to examine how physiologically pertinen...
متن کاملEffect of aging on the transverse toughness of human cortical bone: evaluation by R-curves.
The age-related deterioration in the quality (e.g., strength and fracture resistance) and quantity (e.g., bone-mineral density) of human bone, together with increased life expectancy, is responsible for increasing incidence of bone fracture in the elderly. The present study describes ex vivo fracture experiments to quantitatively assess the effect of aging on the fracture toughness properties o...
متن کاملMixed-mode fracture of human cortical bone.
Although the mode I (tensile opening) fracture toughness has been the focus of most fracture mechanics studies of human cortical bone, bones in vivo are invariably loaded multiaxially. Consequently, an understanding of mixed-mode fracture is necessary to determine whether a mode I fracture toughness test provides the appropriate information to accurately quantify fracture risk. In this study, w...
متن کاملEffect of aging on the toughness of human cortical bone: evaluation by R-curves.
Age-related deterioration of the fracture properties of bone, coupled with increased life expectancy, is responsible for increasing incidence of bone fracture in the elderly, and hence, an understanding of how its fracture properties degrade with age is essential. The present study describes ex vivo fracture experiments to quantitatively assess the effect of aging on the fracture toughness prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bone
دوره 50 1 شماره
صفحات -
تاریخ انتشار 2012